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Abstract
In [1] a new bosonization procedure has been illustrated, which allows us
to express a fermionic Gaussian system in terms of commuting variables by
introducing an extra dimension. The Fermi–Bose duality principle established
in this way also has many potential applications outside the context of gauge
field theories in which it has been developed. In this work we present an
application to the problem of averaging the correlation functions with respect
to random potentials in disordered systems and similar problems.

PACS numbers: 05.30.Jp, 11.15.Ha, 71.23.An

1. Introduction

Both in statistical mechanics and in quantum mechanics there are several situations in which
one has to average the correlation functions of a physical system with respect to disorder
fields [2]. The averaging procedure is complicated due to the fact that the dependence of
the correlation functions on the disorder is not explicitly known. If we restrict ourselves to
systems which admit a representation of the Green functions in terms of Gaussian fields, we
will have three powerful tools at our disposal to solve this problem: the replica method [3], the
supersymmetric method [4] and the so-called Keldysh approach [5, 6]. The replica method can
be applied to more general cases than the supersymmetric method, but it has the disadvantage
that its mathematical consistency has not yet been proved, so it has been subjected sometimes
to some critiques concerning its validity in nonperturbative calculations [7]. On the other
hand, the introduction of supersymmetric fields requires a fermionization of the system in
which the passage from bosonic to fermionic degrees of freedom is often obscure. For this
reason, difficulties arise for instance in systems with spontaneous symmetry breaking, because
it is not easy to interpret the symmetry breaking in terms of the resulting fermionic theory
[8]. Moreover, fermions are particularly difficult to treat numerically. Finally, the Keldysh
technique requires the introduction of an extra dimension and a time ordering, but it is a very
powerful technique and also allows the treatment of systems out of equilibrium.
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In this letter we propose an alternative to the above methods. Our approach is very
similar in spirit to the supersymmetric one and differs from the latter due to the fact that,
instead of fermionization, we exploit the Fermi–Bose duality principle recently established
by Slavnov [1] in the context of lattice gauge field theories in order to provide an expression
of fermion determinants which does not contain anticommuting fields. Successively, this
principle has also been applied in [9] to rewrite the Faddeev–Popov determinants without
anticommuting ghosts. Since in our case all operators are Hermitian, it is possible to simplify
the original procedure, which otherwise would have lead to field theories with derivatives of
the fourth order in the action. Another relevant change with respect to [1, 9] is the choice of
boundary conditions of the auxiliary bosonic fields. Here boundary conditions are dictated by
the compatibility requirement with the regularization needed in the path integral approach to
quantum mechanics to guarantee convergence.

The material presented in this work is organized as follows. In section 2, the problem of
averaging over the disorder fields is briefly discussed. In section 3, our alternative method
based on bosonization is presented. Conclusions are drawn in section 4.

2. The averaging problem in disordered systems

Let H be a local and Hermitian Hamiltonian describing a system with D degrees of freedom
q = (q1, . . . , qD). Further, we suppose that H depends on a set of random potentials
�ϕ(q) = (ϕ1(q), ϕ2(q), . . .) with a given distribution P(�ϕ). Hamiltonians of this kind are
widely applied in quantum mechanics [2]. For instance, choosing �ϕ = (ϕ1), one obtains the
energy operator of a disordered system

H = H0 + ϕ1 (1)

consisting of a fixed Hamiltonian H0 and a random perturbation ϕ1(q). If, for example, ϕ1 is
a source of Gaussian noise, the general form of P(ϕ1) is given by

P(ϕ1) = exp

{
−

∫
dDq dDq ′ ϕ1(q)K(q,q′)ϕ1(q′)

}
. (2)

Analogously, with the same formalism it is possible to discuss the motion of n-dimensional
particles immersed in an electromagnetic field with components Ai, i = 1, . . . , n, putting
�ϕ = (A1, . . . , AD) and taking as ‘distribution’

P(A1, . . . , AD) = exp{−iSQED} (3)

where

SQED = 1

4g

∫
dDx F 2

ij (4)

is the usual action of quantum electrodynamics in n dimensions and Fij = ∂iAj − ∂jAi .1

In the following, we denote the quantum average and the average over disorder fields with
the symbols 〈 〉 and ( ) �ϕ , respectively. With this notation, the advanced and retarded Green
functions of the Hamiltonian H are given by

G±
E(q,q′; �ϕ) = lim

ε→0+

〈
q

∣∣∣∣ 1

E ± iε −H

∣∣∣∣ q′
〉

(5)

1 A situation in which the electromagnetic potentials can be treated as random potentials occurs for instance in
polymer physics (see, e.g., [10]).
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where E + iε is a complex parameter with an arbitrary small imaginary part iε. Relevant
information about the system may be obtained by computing averages over �ϕ of products of
the above Green functions:(
G±
E(q,q′; �ϕ)G±

E′(q,q′; �ϕ) · · ·)�ϕ =
∫

D �ϕP(�ϕ)G±
E(q,q′; �ϕ)G±

E′(q,q′; �ϕ) · · ·. (6)

For this purpose, it is often convenient to use a representation of G±
E(q,q′; �ϕ) in terms of

complex scalar fields φ, ϕ̄:

G±
E(q,q′; �ϕ) = 1

iZ±

∫
DφDφ̄φ(q)φ̄(q′) exp

{
±i

∫
dDqφ̄(E ± iε −H)φ

}
. (7)

Z± represents the partition function of the field theory:

Z± =
∫

DφDφ̄ exp

{
±i

∫
dDqφ̄(E ± iε −H)φ

}
. (8)

It is easy to realize that, even in the simple case of a single noise source with Gaussian
distribution as in equation (2), it is difficult to integrate over the random potentials on the
right-hand side of equation (6) due to the presence of the factor Z−1

± in the definition of
G±(q,q′, E| �ϕ) (see equation (7)). In fact, the partition functionZ± is a functional depending
on �ϕ in a complicated way. In the following section, the possibility of performing the average
with respect to the random potentials without introducing replica fields or fermionic degrees
of freedom is shown.

3. The bosonization method

First of all, we note that the class of problems under investigation has a Gaussian nature, as
is shown by the field theory representation of equation (7), in which only Gaussian fields are
involved. Due to this fact, it will be sufficient to consider only the average of a single Green
function for our aims. Let us study for instance the following average:

〈G−
E(q,q′; �ϕ)〉�ϕ =

∫
D �ϕP(�ϕ)G−

E(q,q′; �ϕ). (9)

Now it will be convenient to interpret the factor Z−1
± in equation (7) as the functional

determinant of the operator E −H :

Z−1
± = det(E ± iε −H). (10)

To express the determinant appearing on the right-hand side of equation (10), we apply the
Fermi–Bose duality principle proposed in [1]. For this purpose, we introduce a fictitious time
τ such that

−T � τ � T (11)

and two sets of auxiliary fields cn(q, τ ), c̄n(q, τ ) and χn(q), n − 1, 2. The field c̄n is the
Hermitian conjugate of cn

c̄n = (cn)
† (12)

while χn is a Hermitian scalar field, i.e. (χn)† = χn. The fields cn and c̄n satisfy the boundary
conditions

cn(q,−T ) = Bn(q) c̄n(q, T ) = B†
n(q) (13)

where Bn(q) is an arbitrary function of q.
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We are now ready to prove the following formula:

Z−1
− = det(E + iε −H) = lim

T→+∞
Zc,1Zc,2 (14)

where

Zc,n =
∫

DcnDc̄nDχn eiSn (15)

and

Sn =
∫ T

−T
dτ

∫
dDq

[
−

(
i

2

∂c̄n

∂τ
+ (E −H)c̄n

)
cn

+

(
i

2

∂cn

∂τ
− (E −H)cn

)
c̄n + 2iεcnc̄n + χ(c̄n + cn)

]
. (16)

The proof is as follows. Since the operatorE−H is Hermitian, it supports a complete system
of orthonormal eigenfunctionsψα with eigenvalues λα:

(E −H)ψα(q) = λαψα(q). (17)

Thus, it is possible to expand the fields cn, c̄n and χn in terms of the ψα:

cn(q, τ ) =
∑
α

cαn(τ )ψα(q) (18)

c̄n(q, τ ) =
∑
α

c̄αn(τ )ψα(q) (19)

χn(q) =
∑
α

χαn ψα(q). (20)

Here cαn(τ ), c̄
α
n(τ ) depend only on the pseudo-time τ , while the χαn are constant coefficients.

To these equations, one should add the expansions of the fields Bn and B†
n which express the

boundary conditions:

Bn(q) =
∑
α

Bαn ψα(q) B†
n(q) =

∑
α

B̄
α

nψα(q). (21)

Substituting equations (18)–(20) in the action (16) and recalling that∫
dDqψα(q)ψβ(q) = δαβ (22)

one obtains for Zc,n,

Zc,n =
∏
α

∫
Dc̄αnDcαnDχαn eiSn,α (23)

with

Sn,α =
∫ T

−T
dτ

[
−

(
i

2

∂c̄αn

∂τ
+ λαc̄αn

)
cαn +

(
i

2

∂cαn

∂τ
− λαc

α
n

)
c̄αn + 2iεcαn c̄

α
n + χαn

(
c̄αn + cαn

) ]
.

(24)

The Gaussian path integral over the fields c̄αn and cαn may be easily computed with the saddle
point method. For this purpose, one has to solve the classical equations of motion of these
fields:

ċαn + ωαcαn − iχαn = 0 (25)
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˙̄cαn − ωαc
α
n + iχαn = 0. (26)

In the above equations we have put ċαn = dcαn
/

dτ , ˙̄cαn = dc̄αn
/

dτ and

ωα = 2(iλα + ε). (27)

The solutions of (25), (26) satisfying the desired boundary conditions are

cαn,cl(τ ) = e−ωα(τ+T )Bαn + i
χαn

ωα
[1 − e−ωα(τ+T )] (28)

c̄αn,cl(τ ) = eωα(τ−T )B̄αn + i
χαn

ωα
[1 − eωα(τ−T )]. (29)

Let us note that cαn,cl and c̄αn,cl do not diverge for large values of τ . Moreover, it is clear that the
boundary conditions are irrelevant in the limit T → +∞, because their contribution vanishes
exponentially as e−2εT .

After the field transformation

cαn(τ ) = cαn,cl(τ ) + cαn,q(τ ) (30)

c̄αn(τ ) = c̄αn,cl(τ ) + c̄αn,q(τ ) (31)

Zc,n becomes

Zc,n = lim
T→+∞

∏
α

∫
DχαnNn,α eiScln,α . (32)

Here we have put

Scln,α = 1

2

∫ T

−T
dτ

[
2i

(
χαn

)2

ωα
− i

(
χαn

)2

ωα
e−ωαT (e−ωατ + eωατ ) + iχαn e−ωαT (

e−ωατBαn + eωατ B̄αn
)]

(33)

and

Nn,α =
∫

Dcαn,qDc̄αn,q exp

[
i
∫ T

−T

(
− i

2
˙̄cαn,qc

α
n,q +

i

2
ċαn,q c̄

α
n,q

)]
. (34)

It is easy to show that the constant factor Nn,α produced by the integration over the ‘quantum’
fields cαn,q, c̄

α
n,q is just a constant, which is independent of ωα and thus can be ignored2. At

this point it is possible to perform the integration over the pseudo-time τ in the action Scln,α .
The result is

Scln,α = 2i

(
χαn

)2
T

ωα
− i

(
χαn

)2

ω2
α

(1 − e−2ωαT ) +
χαn

ωα
(1 − e−2ωαT )

(
Bαn + B̄αn

)
. (35)

Finally, one has to integrate over the variables χαn in Zc,n:

Zc,n =
∫

Dχαn exp

{
i

[
2i

(
χαn

)2
T

ωα
− i

(
χαn

)2

ω2
α

(1 − e−2ωαT )+
χαn

ωα
(1 − e−2ωαT )

(
Bαn + B̄αn

)]}
.

(36)

Only the first term on the right-hand side of the above equation becomes relevant when T
becomes very large, as in our case. Since

2iT

ωα
= T

λα + iε

λ2
α + ε2

(37)

2 Let us note that this factor is also independent of T.
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it turns out that, thanks to the presence of the ε-term in the action Sn of equation (16), the
integrals in Dχαn are convergent. Upon renormalizing the fields χαn in equation (36) as follows:
χα′
n = χαn T

1/2, one finds

Zc,n =
∏
α

√
λα + iε =

√
det(E −H + iε). (38)

This proves equation (14) as desired. An analogous formula can be derived for Z−1
+ .

Coming back to the original averaging problem, we rewrite equation (9) in the form

〈G−
E(q,q′; �ϕ)〉�ϕ = lim

T→+∞

∫
D �ϕP(�ϕ)Zc,1Zc,2

∫
DφDφ̄φ(q)φ̄(q′)

× exp

{
−i

∫ T

−T

dτ

2T

∫
dDqφ̄(E − iε −H)φ

}
. (39)

The dependence of G−
E(q,q′; �ϕ) on the disorder fields �ϕ is now explicit and is given by

equation (16), which expresses the inverse of the partition function Z− as a path integral over
Gaussian fields cn, c̄n, χn, n = 1, 2. At this point it is possible to perform the averaging
over the disorder fields at least perturbatively. In the case of Hamiltonians such as that of
equation (1), the random potential ϕ1 may be integrated from the partition function with the
help of a Gaussian integral.

Let us note that in equation (39) the limit for T → +∞ has been permuted with the
integration over the disorder fields �ϕ. In a similar way, in the method of replicas one needs
to permute the limit of vanishing replicas and the average with respect to the disorder. The
difference between the two approaches is that in the present case the limit T → +∞ does not
require a complex analytical continuation as in the method of replicas and it is mathematically
under control. In fact, the presence of the variable T is only limited to the partition functions
Zc,n of the bosonic fields cn, c̄n, χn. These partition functions may always be rewritten as
in equation (36), i.e. in terms of standard integrals over the real variables χαn , which are
convergent in the limit T → +∞ due to the presence of the ε-term. As a consequence, the
permutation of the symbol limT→+∞ with the integrals which are necessary to compute Zc,n
is allowed.

4. Conclusions

In conclusion, in this work a bosonization approach to disordered systems based on the
Fermi–Bose principle of [1] has been presented. As in the Keldysh approach, bosonization
also requires an extra dimension. The difference is that in the present case three distinct pairs
of complex scalar fields φ̄(q), φ(q) and cn(q, τ ), c̄n(q, τ ), n = 1, 2, are required, while in the
Keldysh approach there are just two pairs. Moreover, in the bosonization approach not all the
scalar fields depend on the pseudo-time τ as in the Keldysh approach. The reason is that, as in
the supersymmetric and replica methods, our treatment considers only the factor Z−1

± , which
makes the integration over the disorder fields difficult. The Keldysh method applies instead
to the whole Green functionG±

E(q,q′; �ϕ) of equation (7). Despite these differences, there are
also some analogies. It would thus be really nice if the bosonization method presented here
could be used to interpolate between the supersymmetric and Keldysh methods showing their
equivalence explicitly, but so far the feasibility of this programme is still an open question.

Since the bosonization approach does not contain fermionic degrees of freedom, it may
be useful in investigating systems with spontaneous symmetry breaking, which are sometimes
complicated by the presence of anticommuting variables. Let us also note that in the case
of quantum chromodynamics the Fermi–Bose principle used to express the Faddeev–Popov
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determinant without the help of ghost fields leads to a new symmetry, which replaces the
usual BRST symmetry. Therefore, it would be interesting to check if the disordered path
integral of equation (39) also enjoys an analogous new symmetry, which would replace the
fermion–boson symmetry of the supersymmetric method. Finally, as always happens in the
case of a new approach, several natural questions arise. For instance, an interesting question
is if the bosonization approach can be used to study non-perturbative effects in disordered
systems. In principle, the answer is yes, in the sense that the Fermi–Bose principle of [1],
which has been exploited here, has been developed having in mind non-perturbative numerical
simulations. Concerning analytical calculations starting from concrete models, this work is
still in progress.
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